

Gesture based communication with UAVs

How to communicate with UAVs when data link fails or is not available

Alexander Schelle

Institute of Flight Systems Department of Aerospace Engineering University of the Bundeswehr Munich 5th May 2017

Motivation

WiFi, LTE, LoS, SatCom, etc.

Operator

Motivation

Common Sensory Equipment

Photography Photogrammetry

- Electro-Optical (EO)
- Light Detection and Ranging (LIDAR)

© electronicsweekly.com

Common Sensory Equipment

Agriculture Precision Farming

- Infrared
- Multi-/ Hyperspectral

© geovantage.com

05.05.2017

Common Sensory Equipment

Surveillance SAR

• Thermal

© http://live.ece.utexas.edu

Common Sensory Equipment

Collision Avoidance

- Depth
- Ultrasonic

© DJI

05.05.2017

Using available imaging sensors to establish gesture based visual communication

Usability

no additional hardware on ground needed, signal loss safe

Using available imaging sensors to establish gesture based visual communication

• Usability

no additional hardware on ground needed, signal loss safe

Autonomous Search

for missing people in dangerous weather conditions

© acmg.ca

Using available imaging sensors to establish gesture based visual communication

• Usability no additional hardware on ground needed, signal loss safe

Autonomous Search

for missing people in dangerous weather conditions

Gestural Commanding

for authorized operators on ground in disaster scenarios

Gestural Transmission of a Search Task

Using available imaging sensors to establish gesture based visual communication

• Usability no additional hardware on ground needed, signal loss safe

Autonomous Search

for missing people in dangerous weather conditions

Gestural Commanding

for authorized operators on ground in disaster scenarios

Human Guidance

Landing spot recommendations (delivery drones)

Using available imaging sensors to establish gesture based visual communication

• Usability no additional hardware on ground needed, signal loss safe

Autonomous Search for missing people in dangerous weather conditions

Gestural Commanding for authorized operators on ground in disaster scenarios

Human Guidance

Landing spot recommendations (delivery drones)

UAV no longer passive observer, but active interaction partner

Modelling Visual Communication with UAS Research Topics

-IFS-

Modelling Visual Communication with UAS Research Topics

PSCE 17 – Alexander Schelle

05.05.2017

- > Person detection and tracking
 - > Spot potential interaction requests
 - (benefit for search for missing persons)
 - > Thermal LWIR sensor
 - > Low resolution operator body shape model

Detection Mode

First Experiment in Detection Mode Utilized Sensor System

- > 2 Axis gyro-stabilized gimbal incl. GEO-lock DST OTUS-L170
- > IR camera FLIR TAU2 640 640x480 @ 25 Hz, HFOV 69° (9mm lens)
- > **GigE** interface for video
- > **RS485** interface for control

-FS-

Experiment in Detection Mode Setup

Experiment in Detection Mode Results

Person and Waving Gesture Detection with LWIR sensor

Concept Operational Modes

- > Operator detection and tracking
 - > Spot potential interaction requests (benefit for search for missing persons)
 - > Thermal LWIR sensor
 - > Low resolution operator body shape model

Detection Mode

Interaction Mode

- > Gesture recognition
- > Translation into gestural command components
- > Depth sensor, EO with high zoom
- > Medium or high resolution operator body shape model

Modelling Visual Communication with UAS Research Topics

Ground sample distance

Concept Skeletal Analysis

Common Tools for Skeletal Analysis

• Kinect v2

Depth sensor + big learned dataset + hardware processing

+ Fast + Accurate

- Hardware dependent
- Limited sensor range
- Indoor use only

© youtube, wired

Concept Skeletal Analysis

New Advances in Pose Estimation using Deep Neural Networks

• Zhe et al., 2016

"Realtime Multi-Person 2D Pose Estimation using part Affinity Fields"

- + Bottom up approach
- + Accurate
- + No depth sensor needed
- Computational costsReal-time only with GPU

acceleration

© Zhe et al., 2016

Experiment in Interaction Mode Sensor System

- > Stereoscopic depth camera Intel RealSense R200
- > Color stream 1920x1080 @ 60 Hz, HFOV 70°
- > IR stream 628x468 @ 60 Hz, HFOV 59°
- > Depth stream 628x468 @ 60/90 Hz, HFOV 59°
- > Depth range 0.6...10m (outdoor)

> USB 3.0 interface

Experiment in Interaction Mode Setup

> Octocopter sensor platform

- Industrial 3.5" Mainboard
- Intel i7 3860 multicore CPU
- 8GB RAM
- 512 GB mSATA SSD

> Performed gestures

- Waving with both arms
- Attention!/I'm in command
- Move left, move right
- Come closer, back up

-IFS-

Experiment in Interaction Mode Results for small distance

Distance to Operator: 7m

05.05.2017

-IFS-

Modelling Visual Communication with UAS Research Topics

PSCE 17 – Alexander Schelle

05.05.2017

-IFS-

Syntax for Gestural Commands

-IFS-

Concept Gestural Command Components

Concept Person and Place Deixis

Concept Gestural Command Components

Concept Gestural Command Components

Concept Gestural Command Components

POST-TASK BEHAVIOR

-FS-

Concept Gestural Command Components

-FS-

Modelling Visual Communication with UAS Research Topics

Concept Authorization

-IFS-

Modelling Visual Communication with UAS Research Topics

39

Flight Maneuvers

Text

More low bandwidth feedbacks:

- DIRECTION?
- DISTANCE?
- TASK?
- TYPE?
- REPEAT

© aircav.com

PSCE 17 – Alexander Schelle

05.05.2017

Experiment in Interaction Mode Result

Distance to Operator: 105m

Summary

Visual Communication with UAVs

- Enables bidirectional interaction
- Allows a more natural interface
- Improves usability
- Opens new fields of application

PSCE 17 – Alexander Schelle

05.05.2017

- [1] A. Kendon, "Gesticulation and speech: Two aspects of the process of utterance", *The relationship of verbal and nonverbal communication*, vol. 25, pp. 207-227, 1980
- [2] E. Fricke, "Grammatik Multimodal: Wie Wörter und Gesten Zusammenwirken", Boston: Walter De Gruyter Incorporated, 2012
- [3] N. Dalal and B. Triggs, "Histograms of Oriented Gradients for Human Detection", in *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*, 2005, pp. 886-893
- [4] D. McNeill, "Hand and Mind: What gestures reveal about thought", University of Chicago Press, 1992

