

Aristotle University of Thessaloniki Faculty of Engineering Department of Mechanical Engineering Laboratory of Fluid Mechanics and Turbomachinery

Development of UAV-based solution against wildfires

Prof. Kyros YAKINTHOS
Laboratory director
kyak@auth.gr

PSCE Conference in Bled, Slovenia 12-13 December 2018

The Mati incident

Date	July 2018	
Place	Attica, GR	
Humans dead	100	
Tramans acad	100	
Cost	approx 40M€	

PSCE Conference in Bled, Slovenia 12-13 December 2018

The challenge that led to a tragedy

- Large area, including residential areas and holidays resorts.
- Very strong winds (up to 8 B).
- Non-existing spatial (urban) planning.

Extremely challenging incident for the firefighters and the civil protection agencies.

The heroes' drama

- Lack of ground troops coordination (no real-time communication).
- Low ground visibility (smoke, fire, debris).

Need for real-time situation awareness, optimal resources deployment and keep firefighters out of harm's way.

The civilians' drama

- Lack of civilians coordination.
- No way of live tracking / information exchange between the rescuers and the people.

Real-time situation awareness and image feeding could help provide accurate instructions to civilians and keep them from harm's way!

The disaster's aftermath

- 100 people dead.
- Damage assessment and area mapping using ground and aerial vehicles.

It costs on time, fuel, personnel and resources in general.

UAVs: a modern and different approach

- Capability to withstand adverse weather conditions.
- Guarantee safety for firefighters and rescue personnel.
- Large flight time (flight endurance).
- Adequate payload capacity (RF links, EOP sensors, flares, supplies).
- Short deployment times.
- Low-cost.

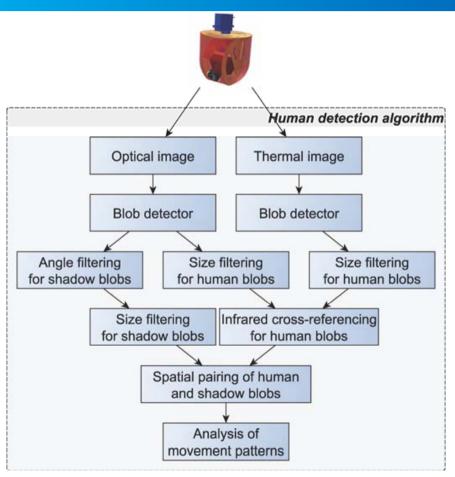
The ideal (?) solution, matching the above requirements is based on UAVs.

PSCE Conference in Bled, Slovenia 12-13 December 2018

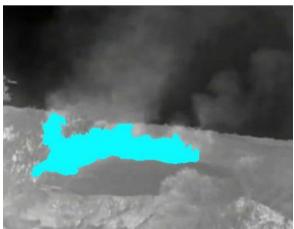
UAV dilemma: multicopters or fixed-wing

Trades				
Payload capacity	Low (~1 kg)	High (10-50 kg)		
Flight endurance	Very low (< 40 min)	High (> 10 hrs)		
Stability	Weak (in strong winds)	Excellent (up to 8 B)		
Speed	Medium (up to 50 km/h)	High (up to 250 km/h)		
Ease of deployment	High	Low		
Portability	High	Low		
Manoeuvrability	PSCE Conference in Bled, Slovenia 12	ed, Slovenia 12-13 December 2018 Medium		

- Telecommunication systems
- EOP
- Onboard computers
- Telemetry systems
- Laser range finder (LRF) systems



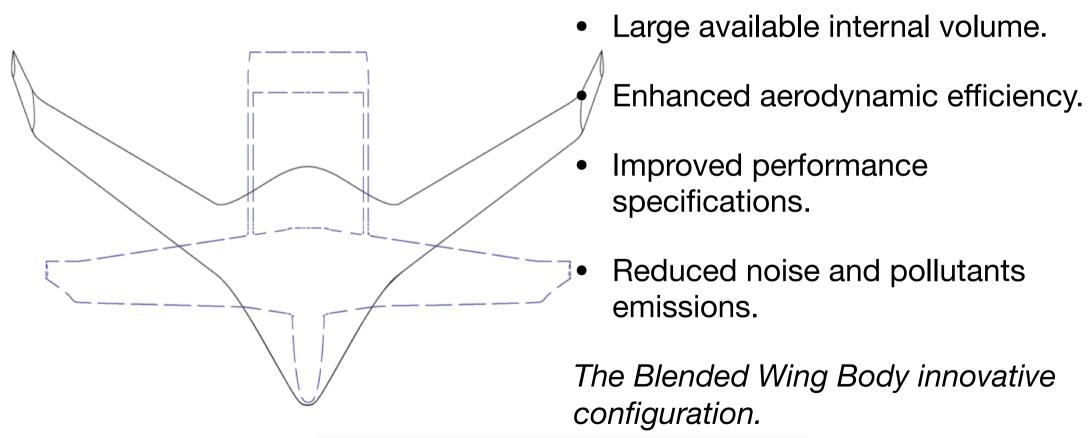
 Even lifesaving equipment for maritime rescue missions (humans trapped in a coast line).


• EOP and human detection algorithms.

PSCE Conference in Bled, Slovenia 12-13 December 2018

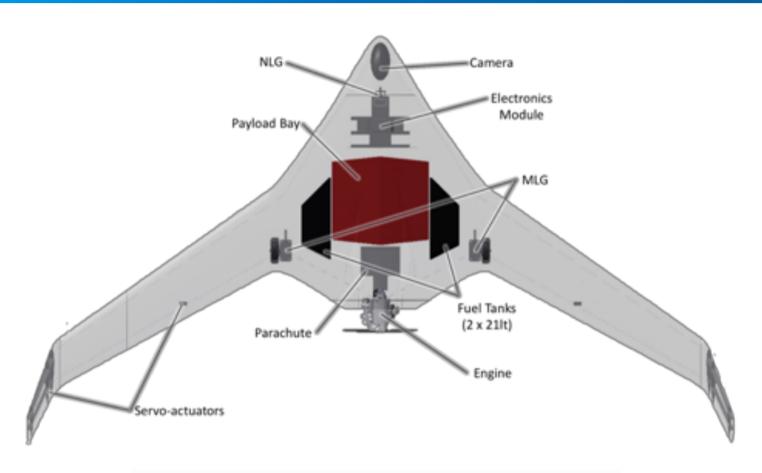
EOP and fire detection algorithms.

The prototypes: The RX-1



PSCE Conference in Bled, Slovenia 12-13 December 2018

Conventional and innovative designs



PSCE Conference in Bled, Slovenia 12-13 December 2018

Payload and BVVB

PSCE Conference in Bled, Slovenia 12-13 December 2018

The prototypes: The RX-3

PSCE Conference in Bled, Slovenia 12-13 December 2018

The prototypes: The RX-3

PSCE Conference in Bled, Slovenia 12-13 December 2018

Some in-house configurations & prototypes

RX-X	RX-1	RX-2	RX-3	RX-4
Mission	Surveillance	Combat	Support/Rapid response	Surveillance (VTOL)
Weight	185 kg	800 kg	200 kg	4 kg
Span	6.4 m	9 m	7.2 m	2 m
Payload	35 kg (radios & EOP)	20 kg (radios) + 45 kg (missiles)	20 kg (radios) + 45 kg (droppable)	500 gr (avionics) + 500 gr (EOP)
Flight speed	140 kph	Mach 0.6	180 kph	55 kph
Image				

PSCE Conference in Bled, Slovenia 12-13 December 2018

A typical wildfire incident and a rescue scenario

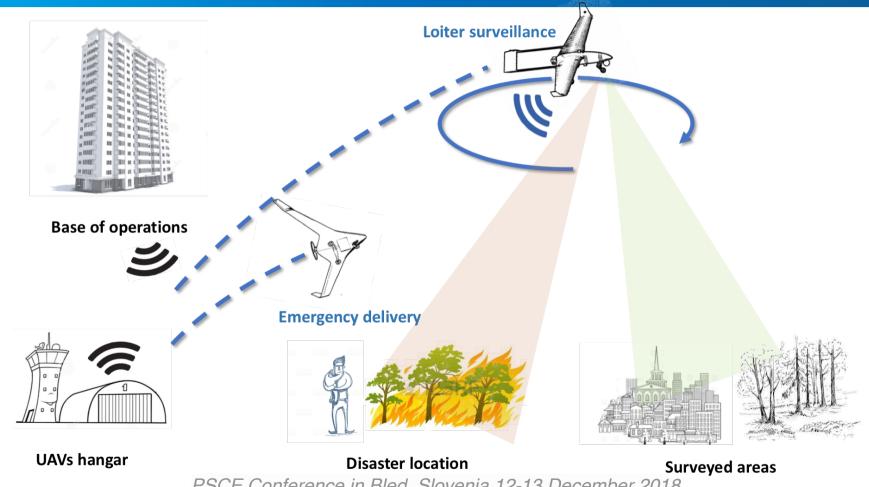
The incident conditions:

- Wildfires
- Smoke
- Strong winds
- Trapped civilians
- Blocked GSM network
- Unpredictable ambient conditions.

UAVs can provide integrated rescue solutions.

UAVs to the rescue!

Fixed wing UAVs can:


- provide real-time images and videos through the entire operation that may last days,
- keep firefighters and civilians out of danger zones,
- serve as aerial communication (R/F) relay systems,
- support the Incident Commander (IC),
- provide any life saving supplies and
- operate simultaneously with other manned aerial and ground units.

At a very low cost in lives and resources...

UAVs to the rescue!

PSCE Conference in Bled, Slovenia 12-13 December 2018

Thank you for your attention :-)

Kyros