

Cognitive radio and Cooperative strategies for POWER saving in multi-standard wireless devices

Olivier Perrin, Cassidian
PSC Europe Forum Conference
Helsinki, Finland

http://www.ict-c2power.eu

C2POWER at a Glance

Project Coordinator Jonathan Rodriguez

Instituto de Telecomunicações

Tel: +351 234 377900 Fax: +351 234 377901

Email: jonathan@av.it.pt

Project website: www.ict-c2power.eu

Duration: Jan. 2010-Dec. 2012

Funding scheme: STREP
Total Cost: €5,14m
EC Contribution: €3,45m

Contract Number: INFSO-ICT-248577

Energy Efficiency and Mobile networks

So far, mobile networks standards and design rules have ignored EE

- Cellular networks have been optimized in terms of spectral efficiency, Max capacity, not really in terms of Energy Efficiency!
- Efficiency metrics
 - Spectral efficiency b/s/Hz
 - Energy efficiency J/b
- With mobile networks becoming ever so power hungry, there is a need for huge efficiency improvement!
 - Opex increase
 - Battery lifetime

Where to reduce Energy Consumption?

 Research projects are discussing energy efficiency on the network side or terminal side

There is a continuously growing gap between the energy requirements of emerging radio systems and what can be achieved by:

- Battery technology evolution
- Scaling and circuit design progress
- System level architecture progres:
- Thermal and cooling techniques

- Short range cooperation among mobile terminals
- Cognitive Vertical Handovers between RATs
- Context Awareness
- Energy-efficient Reconfigurable Radio transceivers
- Business models

C2 POWER Objectives

		Investigate how context information can be used by cooperative strategies to achieve power efficiency at the wireless interface of mobile devices.
Technical		Investigate and demonstrate the potential of cooperative techniques based on advanced short range communications for the goal of power/battery lifetime saving of mobile wireless devices.
	<u> </u>	Investigate and demonstrate minimum energy consumption handover procedures and policies between heterogeneous technologies and associated tradeoffs in realistic scenarios. Investigate, design and demonstrate energy efficient reconfigurable multi-standard transceivers able to switch from one standard to another according to a power saving strategy.
Business	0	Investigate methods and incentives to encourage cooperation and develop attractive business models for the network/service provider (Stimulate and motivate cooperative networking among users and between heterogeneous networks, e.g. financial incentives / bio-inspired reputation mechanisms).

Short Range Cooperation

Energy Efficient Cognitive Handover

Choose the most energy efficient available RAT (Goal: 20% Gain)

Reconfigurable Radio Transceivers

C2POWER Holistic Solution

C2POWER Gain: Short Range Cooperation

C2POWER Gain: Short Range Cooperation II

WiMedia - WiFi

C2POWER Demonstrative Showcases

- Short range cooperation testbed
 - WiMedia nodes with enabled WiFi interface
- Vertical Handover Mobility platform
 - WiMAX and WiFi
 - Femto cell
- RF prototypes
 - Energy efficient power amplifier
 - Low power consumption antennas
- Installing manufactured antennas on WiMedia Nodes

Test-bed Overview – Components

Nodes

- DUT (Device Under Test)
 - Wi-Fi & UWB radios
- Telemetry controller
- Power measurement electronics & RF attenuators (UWB & Wi-Fi)

Wired RF Environment

- Shared by Wi-Fi and UWB
- Reproducibility and stability

Test Fixture Controller

- Controls nodes & gathers measurements via independent telemetry network
- Automated scripting capability
 - RF attenuation (controls the effective internode ranges)
 - Power measurement
 - Traffic control
- Wi-Fi access point

SEVENTH FRAMEWORK

Test-bed Overview – Wired RF Environment Foundation

Receiver Performance Tester

- Reference transmitter
- GPIB-controlled attenuator
- Receiving DUT.
- Automated with Python scripts
 - Attenuator
 - Rx sensitivity, PER
 - Channels and data rate selection
- Various UWB devices are tested
 - Products under development
 - Application development kits.

VHO Demonstration Platform

4 main parts

- The Central Unit: includes the Mobile
 IP core, and the mobility manager
 - Based on Mobile IPv4
- The Terminal Unit: includes the mobile IP client and the Terminal Context aware module
- A database: houses all the context needed by VHO decision making
- A VHO Evaluation module for evaluating the energy efficient VHO algorithms.

C2POWER Energy Efficient Front-end Module

Showcase of the FEM with the Envelope-Tracking (ET) PA, the Doherty PA and the TMN-Antenna modules

C2POWER wireless node cooperation testbed

- 3rd C2POWER Workshop
 - CAMAD 2012
 - 17-19th September 2012
 - http://camad2012.av.it.pt/
 - Barcelona, Spain
 - Demo Session

Thank You

